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ABSTRACT
A major benefit of intelligent and autonomous vehicles is their ability to

navigate through hazardous environments that pose a significant danger to
humans. In such environments, eventual damage to vehicle sensors is often
inevitable. To address this threat to vehicle function, we propose a more robust
system in which information from alternative sensors is leveraged to restore
navigation capabilities in the case of primary sensor failure. This system employs
image translation methods that enable the vehicle to use images generated from
an auxiliary camera to synthesize the display of the primary camera. In this
work, we present a conditional Generative Adversarial Network (cGAN) based
method for view translation coupled with a Residual Neural Network for imitation
learning. We evaluate our approach in the CARLA simulator and demonstrate its
ability to restore navigation capabilities to a real-world vehicle by generating a
front-view image from a left-camera view.
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1. INTRODUCTION
In the context of real-world autonomous vehicles,

sensor perception plays a crucial role in the
functioning of these systems. Damage to sensors
can impact the vehicle’s ability to gather information
about its environment, thus hindering its mobility.
Utilizing information from auxiliary sensors to
reinstate navigation capabilities in the event of main
sensor failure could address this problem. In this
work, we leverage an alternate left camera view feed
to synthesize a front camera view which is necessary
for vehicle autonomy. This simulates a scenario
where the main sensor was necessary for vehicle
autonomy, but was Our task can be framed as an
image-to-image translation problem.

Isola et al.[19] first introduced the use
of conditional GANs [18] to solve various
image-to-image translation tasks, such as
transforming semantic maps to real views and
generating cats from user sketches, where the
input and target images share similar outlines and
scene structures. Differing from these applications,
our task is particularly challenging due to various
viewing angles, which leads to the presence of
objects in one view that is absent from the other
view. Additionally, details such as shadows and
lights can differ significantly between the two views.
Several works [11, 30] have proposed methods to
address cross-view translation problems by using
semantic maps of the target domain to guide the
generation process. However, we argue that the
success of these existing methods is limited to their
benchmark data sets since prior information on
the environment is not available in many practical
applications. Additionally, the synthesized images
in our application are required to produce accurate
driving controls for an autonomous vehicle, which is
unprecedented in current studies.

To tackle the above challenges, we propose
an image translation framework adopted from the
pix2pix method [19] and incorporate a perceptual
loss which has been shown to be useful for image

super-resolution [24] and style transfer [23]. We
fine-tune this model in conjunction with a fixed,
pre-trained imitation model that provides driving
autonomy to a vehicle. The baseline imitation
model is adopted from [3] and is trained using
behavioral cloning in an end-to-end driving format.
The network is comprised of a perception backbone
and a control head and outputs driving controls based
on an input image. We show that through a modified
objective as well as a two-step training strategy, we
can synthesize images that are not only visually
appealing but also faithful to the ground truths in
terms of driving functionality.

Our proposed image translation model is
evaluated by comparing the driving performance
when using the generated fake image to the
performance of real front view image in the Carla
simulator environment [4]. We conduct experiments
following the NoCrash benchmark [3] and the Carla
benchmark [4], to compare driving performance of
the original imitation learning model with that of our
proposed image translation model.

2. RELATED WORK
Here we discuss related works in the fields

of GANs and behavioral cloning, focusing on the
context of autonomy.

2.1. GANs and conditional GANs
Generative Adversarial Networks(GANs) were

introduced by [5], which explored the viability of
adversarial networks. These networks displayed
successful results in generating images by utilizing
two models, a generator and a discriminator, which
are trained in conjunction with one another. The
generator is trained to fool the discriminator and
the discriminator is trained to detect fake images
created by the generator. This competition produces
consistent and concurrent optimization of each
model until the generator produces images that
cannot be distinguished from the ground truth.
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Conditional GANs [9] built on this concept by
providing images with their actual labels during
training to help the model learn the difference
between different classes of images. Regmi and
Borji [11] propose a solution to the cross-view image
synthesis problem using a cGAN approach. They
enforce the network to generate a semantic map of
the target view, which facilitates the generation of a
real image. Tang et al. [30] address this challenge
with their proposed SelectionGAN, which leverages
semantic information through a two-stage process.
In contrast, our model does not require additional
information from the target domain, demonstrating
a clear advantage for real-world applications.

2.2. Imitation Learning

Imitation learning in autonomy was first
introduced with ALVINN [10], where a supervised
learning approach was taken to produce the
necessary curvature the vehicle would need to follow.
Simulated road images and lidar data were used as
inputs and expert outputs were provided based on
the actual road curvature. This was extended with
inverse reinforcement learning [12], where the agent
is allowed to infer a reward function from expert
demonstrations. Inverse reinforcement learning
tends to have poor sample efficiencies, which
is improved by generative adversarial imitation
learning [6]. Here they connect imitation learning
with generative adversarial networks by setting up
a discriminator which distinguishes between expert
policy and learned policy and pitting it against a
generator that produces samples using the learned
policy. The GAN is a more efficient way to match
the expert data distribution with the learned data
distribution than behavioral cloning. In the interest of
autonomous driving, Carla Simulator [4] is a popular
platform for research and provides a high-fidelity
simulated environment where we can set up the
autonomous agent with multiple camera sensors.
[3] introduced an imitation learning model where

the learning is conditioned on a high-level direction
signal. The vehicle’s velocity is used as an input,
along with an RGB camera image and the directional
command to produce controls for the throttle, brake,
and steering. Generative Adversarial Imitation
Learning was extended to the Carla simulator and
tested in an end-to-end setting by [2, 7]. They
introduce multi-stage training where a privileged
agent is used to train a standard unprivileged agent.

3. IMITATION LEARNING BASELINE

Given sensor data observation o and high-level
command c, it is trained to output vehicle controls
that are close to ground truth a. In particular,
observation o contains a single camera view and
ego car speed. Ground truth a indicates controls
for the throttle, brake, and steering of the vehicle,
which is obtained from an expert driving AI agent
that leverages privileged information about the scene
to drive naturally and perform well in a simulator
environment. The loss function of the imitation
model I(·) can be defined as:

Limi = ∥I(o, c)− a∥1 (1)

To provide a baseline for testing our view
translation network in the end-to-end driving
scenario, we utilize a pre-trained conditional
imitation learning model from [3]. This model adopts
ResNet [20] architecture as the perception backbone,
learning reactions to dynamic objects and traffic
lights in complex urban environments. To reduce the
dependency on input speed as the sole indicator of
the scene’s dynamics, they jointly train a network to
predict the vehicle’s speed. The decision to re-utilize
a checkpoint is made as the model has been trained
on 100 hours of realistic simulated data, which is
significantly more than the size of our current data
set.
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Figure 1: Overview of the proposed method. In stage I, we employ the improved adversarial loss to train a conditional GAN
for generating front view image G(x) from left view image x. We further fine-tuned it with imitation learning model I in the
second stage by comparing the vehicle controls generated by ground truth y with those produced by the synthesized view
G(x).

4. IMAGE TRANSLATION MODEL

Given a pair of images (x,y), our objective is
to learn a mapping from an auxiliary left view
image x to front view image y in the simulated
driving environment. Specifically, the generated
image is intended to produce driving controls that
match those derived from the front-view image when
passed through the imitation model. We propose
a conditional adversarial framework for the task
and explain the model in two stages. We first
review the baseline model pix2pix[19] and then
describe modifications we made for image quality
improvements(Sec.4.1). Next, we explain how we
fine-tune our image translation model in conjunction
with the imitation learning model, which ensures
the generated images produce the correct vehicle
controls when passed through the imitation model.
(Sec.4.2). An illustration of our method is depicted
in Fig.1.

4.1 The pix2pix baseline and improvements
We start from the baseline pix2pix[19] model,

which adopts the U-Net[25] architecture as the
generator and a patch-based, fully convolutional
network[26] as the discriminator. The input
to the generator is the left-view image without
Gaussian noise, which leads to deterministic
outputs. The input to the discriminator is a
channel-wise concatenation of the source image and
the corresponding real front-view image. We adopt
a non-saturating adversarial loss in [5] to train the
network,

LcGAN =E(x,y)∼pdata(x,y)[logD(x, y)]+
Ex∼p(x) [1− logD(x, G(x))],

(2)

where G(·) and D(·) denote the generator and
discriminator, respectively.

Following [19], we also utilize L1 loss to ensure
the generator captures the low frequencies beyond
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modeling the distribution of the target domain and
synthesizes images close to desired target,

LL1 = ∥y −G(x)∥1. (3)

Improved adversarial loss. We improve the
GAN loss in the pix2pix model by incorporating a
perceptual loss term LPIPS[21]. This loss stabilizes
the training as the generator has to produce similar
feature maps at multiple scales. In particular, the
generator is forced to synthesize an image with
matching intermediate representations of the real
image by extracting from multiple layers of the
pre-trained network. The feature matching loss is
defined as:

LLPIPS = ∥F (y)− F (G(x))∥22, (4)

where F (·) denotes a pre-trained VGG[21] network
used for perceptual feature extraction.

Our final loss for the first stage of learning is a
weighted sum of the above losses:

LGAN = LcGAN + λ1LL1 + λ2LLPIPS, (5)

where λ1 and λ2 are parameters to control the relative
importance of different components.

4.2 Fine-tune with Imitation Learning model
Ideally, the synthesized image should be able to

generate exact or similar controls to those generated
by the actual front-view image. To achieve this, we
further fine-tune our image translation model with
pre-trained imitation learning model mentioned in
Sec.3. As the high-level command c and current
car speed are shared between the left and front view
image pair, we simplify the control loss here as:

Lct = ∥I(y)− I(G(x))∥1, (6)

where I(·) refers to imitation learning model.
Intuitively, Eq.(6) acts as a regularization that forces
the generator to output an image with control related

features that match those from the corresponding
ground truth image. Combined with the loss in the
first stage, our objective function for stage two is

Lfine = LGAN + λ3Lct. (7)

During training, we keep I(·) untouched and
only back-propagate the gradients from Lct to the
generator.

Note that GANs are often difficult to train and
collapse without carefully selected hyperparameters
and regularization [27, 28]. We observed that
incorporating Lct at the initial stage of training can
impede the convergence of the GAN model. To
mitigate this issue, we adopt such two-step training
approach, where the control regularization term is
only employed once the generation process has
stabilized.

5. EXPERIMENTS
5.1. Data Collection

In accordance with the methodology described in
[3], data were collected in the Carla Simulator using
an expert driving agent. The data collection process
involved recording images, velocity, and directional
inputs during a series of episodes. Each episode
consisted of a designated start location and target
location, with data only being recorded if the expert
agent successfully completed the episode. To add
diversity to the data, the simulator was populated
with randomly generated actors, including vehicles
and pedestrians, and the weather was randomly
selected from four pre-designated training weather
conditions. The left camera was positioned with an
outward angle of 15 degrees. To ensure the correct
synchronization of data, the data from each sensor
was recorded at the same timestamp. In summary,
we collected a dataset of 207,000 realistic simulated
driving samples, each comprising a pair of left-view
images, front-view images, and the corresponding
measurements.
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5.2 Training details
We adapt the model architecture from the pix2pix

method and modify it to be compatible with our
image size of 200x88. During the initial training
stage, we set λ1 = λ2 = 10 in Eq.(5). We employ
minibatch SGD using the Adam solver [29], with a
learning rate of 0.0002, and momentum parameters
β1 = 0.5, β2 = 0.999. In the subsequent fine-tuning
stage, we adjust the learning rate to 0.00001 and use
λ3 = 200 in Eq.(7) to compensate for the relatively
small signal from the imitation model. Our model is
trained for 500 epochs and fine-tuned for 200 epochs.

5.3. Experimental Setup
We evaluate the performance of our image

translation model on two benchmarks in the Carla
Simulator. The first benchmark is the NoCrash
benchmark, which is more complex and was the
primary focus of our fine-tuning and improvement
efforts. The second benchmark is the standard Carla
Benchmark, which includes simpler tasks.
NoCrash benchmark, introduced in [3], measures
the driving performance on a set of complex episodes
under various conditions. Each episode consists
of a designated start and end point and typically
requires the vehicle to navigate through several turns.
The benchmark includes multiple testing conditions,
including the training conditions, new weather, new
town, and new town and weather. The training
conditions feature the same four weather conditions
and town used in the data collection process. The
new weather scenario adds two previously unseen
weather conditions, WetSunset and SoftRainSunset.
The new town scenario changes the town to Town02,
which is similar to the training town, Town01,
but is smaller and has different buildings and
backgrounds. The new town and weather scenario
combines the previous two additions to create a more
challenging scenario. The simulation is also run
with three different tasks: empty, regular, and dense,
which describe the number of other actors in the

simulation, with more actors increasing the difficulty
of navigation. A given episode is considered a failure
if a collision occurs or the vehicle does not reach the
target destination within the allotted time. As shown
in Table 1, the results are reported as the percentage
of completed episodes.
Carla Benchmark evaluates the driving
performance on four tasks that increase in difficulty.
The tasks include straight, one turn, navigation, and
navigation dynamic, with the only task that includes
other actors being the navigation dynamic. The
other three tasks are all tested in an empty town and
mainly assess the vehicle’s ability to follow the lane
and complete a turn. The conditions refer to the
weather and town scenarios, with the new weather
and town scenario being the most challenging for
generalization.

5.4. Results

Qualitative Results. The offline image translation
results are displayed in Fig.2, where the input
images are loaded as mini-batches from the hard
drive. Our model is observed to generate visually
appealing images that closely match the ground truth
front view. In particularly, the generated images
accurately capture crucial driving details, such as
solid lines, road shoulders, and oncoming vehicles.
Furthermore, our model is capable of real-time image
translation, where the input left views are directly
obtained from the left camera on an ego car in the
Carla environment. As demonstrated in Fig.3, the
generated front views are faithful and are produced
without latency (better viewed in video), ensuring the
self-driving functionality is not compromised when
the signal from main sensor is unavailable. These
results indicate that our method can be effectively
applied in empirical end-to-end driving scenarios.
Quantitative Results. As demonstrated by
Table 1 and Table 2, our translation model
exhibits a favorable comparison with the imitation
learning baseline when evaluated under the training
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Figure 2: Input left view, ground truth front view, and our synthesized front view are shown respectively

conditions. More importantly, our generated images
even outperform the baseline in three tasks from the
Carla benchmark and one task from the NoCrash
benchmark. These results are noteworthy as the
performance of the model does not significantly
decrease as more agents are introduced into the
simulation, which highlight the capability of our
model in translating images from different angles
without losing important features crucial for driving
controls.

However, our method exhibits a decrease in
driving performance compared to the baseline as new
weather conditions and a new town are introduced. In
particular, when evaluated in the Empty task scenario
from the NoCrash benchmark, a 55% decrease in
performance is observed with the introduction of
unseen weather. Similar performance drops are also
observed in the New Town scenario and the more
challenging New Town and Weather scenario. This
degradation in performance can be attributed to the
inherent limitations of GANs, which tend to struggle
in generalizing to unseen scenarios. Fine-grained
information is required by the generator to synthesize
ground truth images, making it challenging to

perform well on unseen weather or town conditions
without prior training data.

NoCrash Empty Regular Dense
Training Conditions 0.97/0.96 0.81/0.88 0.31/0.49
New Weather 0.45/1.0 0.44/0.82 0.20/0.46
New Town 0.29/0.67 0.22/0.53 0.08/0.25
New WeatherTown 0.10/0.6 0.02/0.54 0.06/0.22

Table 1: Results from NoCrash benchmark. Driving
performances are displayed based on the percentage of
episodes completed in each experiment. Results from our
best translation model are displayed in bold to the left of
the baseline performance.

Carla Straight One turn Dyn Nav. Dyn
Training Conditions 1.0/1.0 0.99/0.97 0.95/0.99 0.95/0.90
New Weather 0.56/1.0 0.38/0.82 0.16/0.46 0.04/0.98
New Town 0.29/0.67 0.22/0.53 0.08/0.25 0.35/0.62
New WeatherTown 0.78/1.0 0.56/0.96 0.28/0.98 0.30/0.96

Table 2: Results from Carla benchmark. Driving
performances are displayed based on the percentage of
episodes completed in each experiment. Results from our
best translation model are displayed in bold to the left of
the baseline performance.
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Figure 3: Screenshot of real-time image translation in Carla. Left view captured by the sensor is shown in the middle while
synthesized front view is below ground truth at the top left corner. Note that we do not input front view to the imitation
model and vehicle is controlled by the outputs from synthesized view.

6. CONCLUSION
The results in this paper suggest that conditional

GANs can handle cross-view image translation tasks
without any auxiliary information from the target
domain as guidance. By incorporating a perceptual
loss and fine-tuning with an imitation learning
model, our approach exhibits strong performance
in driving scenarios that share a similar statistical
distribution with training data. Despite the inherent
lack of generalization for unseen data in GANs, our
method highlights the potential for using an alternate
camera to synthesize missing information necessary

for autonomous vehicles. We anticipate that this
work can be extended to other scenarios, such
as addressing wider camera angle discrepancy or
generating ground views from aerial camera streams,
to create a robust autonomous system.
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